14 de septiembre de 2011

Superconductores

Se denomina superconductividad a la capacidad intrínseca que poseen ciertos materiales para conducir corriente electrica sin resistencia ni pérdida de energía en determinadas condiciones.
La resistividad electrica de un conductor metálico disminuye gradualmente a medida que la temperatura se reduce. Sin embargo, en los conductores ordinarios, como el cobre y la plata, las impurezas y otros defectos producen un valor límite. Incluso cerca de cero absoluto una muestra de cobre muestra una resistencia no nula. La resistencia de un superconductor, en cambio, desciende bruscamente a cero cuando el material se enfría por debajo de su temperatura crítica. Una corriente electrica que fluye en una espiral de cable superconductor puede persistir indefinidamente sin fuente de alimentación. Al igual que el ferromagnetismo y las lineas espectrales atómicas, la superconductividad es un fenómeno de la mecánica cuántica.
La superconductividad ocurre en una gran variedad de materiales, incluyendo elementos simples como el estaño y el aluminio, diversas aleaciones metálicas y algunos semiconductores fuertemente dopados. La superconductividad no ocurre en metales nobles como el oro y la plata, ni en la mayoría de los metales ferromagnéticos.

Comportamiento magnético


Aunque la propiedad más sobresaliente de los superconductores es la ausencia de resistencia, lo cierto es que no podemos decir que se trate de un material de conductividad infinita, ya que este tipo de material por sí sólo no tiene sentido termodinámico. En realidad un material superconductor de tipo I es perfectamente diamagnético. Esto hace que no permita que penetre el campo, lo que se conoce como efecto Meissner.

El campo magnético distingue dos tipos de superconductores: los de tipo I, que no permiten en absoluto que penetre un campo magnético externo (lo cual conlleva un esfuerzo energético alto, e implica la ruptura bruscadel estado superconductor si se supera la temperatura crítica), y los de tipo II, que son superconductores imperfectos, en el sentido en que el campo realmente penetra a través de pequeñas canalizaciones denominadas vórtices de Abrikosov, o fluxones. Estos dos tipos de superconductores son de hecho dos fases diferentes que fueron predichas por Lez Davidovich Landau y Aleksey Alekséyevich Abrikósov.
Cuando a un superconductor de ipo II le aplicamos un campo magnético externo débil lo repele perfectamente. Si lo aumentamos, el sistema se vuelve inestable y prefiere introducir vórtices para disminuir su enérgia. Éstos van aumentando en número colocándose en redes de vórtices que pueden ser observados mediante técnicas adecuadas. Cuando el campo es suficientemente alto, el número de defectos es tan alto que el material deja de ser superconductor. Éste es el campo crítico que hace que un material deje de ser superconductor y que depende de la temperatura.



Comportamiento electrico

 

La aparición del superdiamagnetismo es debida a la capacidad del material de crear supercorrientes. Éstas son corrientes de electrones que no disipan energía, de manera que se pueden mantener eternamente sin obedecer el efecto Joule de pérdida de energía por generación de calor. Las corrientes crean el intenso campo magnético necesario para sustentar el efecto Meissner. Estas mismas corrientes permiten transmitir energía sin gasto eonergético, lo que representa el efecto más espectacular de este tipo de materiales. Debido a que la cantidad de electrones superconductores es finita, la cantidad de corriente que puede soportar el material es limitada. Por tanto, existe una corriente crítica a partir de la cual el material deja de ser superconductor y comienza a disipar energía.
En los superconductores de tipo II, la aparición de fluxones provoca que, incluso para corrientes inferiores a la crítica, se detecte una cierta disipación de energía debida al choque de los vórtices con los átomos de la red.

Descubrimiento

 

Ya en el siglo XIX se llevaron a cabo diversos experimentos para medir la resistencia eléctrica a bajas temperaturas, siendo James Dewar el primer pionero en este campo.
Sin embargo, la superconductividad como tal no se descubriría hasta 1911, año en que el físico holandés Heike Kamerlingh Onnes observó que la resistencia eléctrica del mercurio desaparecía bruscamente al enfriarse a 4 K (-269 °C), cuando lo que se esperaba era que disminuyera gradualmente hasta el cero absoluto. Durante los primeros años el fenómeno fue conocido como supraconductividad.
En 1913 se descubre que un campo magnético suficientemente grande también destruye el estado superconductor, descubriéndose tres años después la existencia de una corriente eléctrica crítica.
Puesto que se trata de un fenómeno esencialmente cuántico, no se hicieron grandes avances en la comprensión de la superconductividad, puesto que la comprensión y las herramientas matemáticas de que disponían los físicos de la época no fueron suficientes para afrontar el problema hasta los años cincuenta. Por ello, la investigación fue hasta entonces meramente fenomenológica, como por ejemplo el descubrimiento del efecto Meissner en 1933 y su primera explicación mediante el desarrollo de la ecuación de London dos años más tarde por parte de los hermanos Fritz y Heinz London.

Los superconductores de alta temperatura 

 

Tras algunos años de relativo estancamiento, en 1986 Bednorz y Müller descubrieron que una familia de materiales cerámicos, los óxidos de cobre con estructura de perovsquita, eran superconductores con temperaturas críticas superiores a 90 kelvin. Estos materiales, conocidos como superconductores de alta temperatura, estimularon un renovado interés en la investigación de la superconductividadCooper". Y, debido a que el estado superconductor persiste hasta temperaturas más manejables, superiores al punto de ebullición del nitrógeno líquido, muchas aplicaciones comerciales serían viables, sobre todo si se descubrieran materiales con temperaturas críticas aún mayores.

 

Aplicaciones

 

Los imanes superconductores son algunos de los electroimanes más poderosos conocidos. Se utilizan en los trenes maglev, en máquinas para la resonancia magnética nuclear en hospitales y en el direccionamiento del haz de un acelerador de patículas. También pueden utilizarse para la separación magnética, en donde partículas magnéticas débiles se extraen de un fondo de partículas menos o no magnéticas, como en las industrias de pigmentos. Los superconductores se han utilizado también para hacer circuitos digitales y filtros de radiofrecuencia y microondas para estaciones base de telefonia móvil. Los superconductores se usan para construir uniones Josephson, que son los bloques de construcción de los SQUIDs (dispositivos superconductores de interferencia cuántica), los magnetómetros conocidos más sensibles. Una serie de dispositivos Josephson se han utilizado para definir el voltio en el sistema internacional (SI). En función de la modalidad de funcionamiento, una unión Josephson se puede utilizar como detectorde fotones o como mezclador. Aplicaciones futuras prometedoras incluyen tranformadores de alto rendimiento, dispositivos de almacenamiento de energía, la transmisión de energía eléctrica, motores eléctricos (por ejemplo, para la propulsión de vehículos, como en vactrains o trenes maglev) y dispositivos de levitación magnética. Sin embargo la superconductividad es sensible a los campos magnéticos en movimiento de modo que las aplicaciones que usan corriente alterna (por ejemplo, los transformadores) serán más difícil de elaborar que las que dependen de corriente continua.

No hay comentarios:

Publicar un comentario